Design Dialogue Journal ID

Analyzing the Effects of Shear Deformations on the Structural System

Identification

Seyyedbehrad Emadi '*

Received: 16 November 2024
Accepted: 09 December 2024
Published: 13 December 2024

Copyright: © 2024 by the
authors.

This article is an open-access
article distributed under the
terms and conditions of the
Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/
licenses/by/4.0/).

! DICIV, Department of Civil Engineering, University of Salerno, Fisciano (SA), Italy.

* Correspondence: behradei@gmail.com

Traditional structural system identification techniques often rely on redundant
measurement sets due to the linearity of their governing equations, a requirement that
becomes problematic when data availability is limited. To mitigate these constraints, more
adaptable identification methods have recently been introduced. However, similar to many
existing approaches, they are typically based on the Euler—Bernoulli beam theory, which
neglects shear deformation effects. While this assumption may be acceptable for slender
members, it can lead to significant inaccuracies in elements such as deep beams, where
shear contributions strongly influence mechanical properties. This study addresses this
limitation by integrating shear deformation into a structural system identification
framework. Through a comprehensive parametric analysis, the impact of shear deformation
on the structural response across members with varying slenderness ratios is evaluated,
offering improved accuracy and reliability for system identification in practical
engineering applications.

Keywords: Health monitoring, Structural System Identification, Observability Method,
Shear stiffness, beams, bridges.

1. Introduction

System Identification (SI) refers to the process of constructing models for systems whose
internal characteristics are not fully known, and it is widely employed across different
branches of engineering [1]. The goal is to generate mathematical representations capable
of capturing how the system behaves. One of the earliest contributors was Friedrich Gauss,
who devised the Gauss—Newton method for refining parameter estimates in orbital
trajectory calculations. SI initially emerged in electronic engineering but soon spread into
other scientific and technical disciplines [2, 3]. Within SI, Structural System Identification
(SSI) is a specific branch that focuses on extracting structural parameters, such as bending
and axial stiffness, through mathematical formulations [4].

A broad spectrum of SSI techniques has been proposed in the literature [5, 6].
Classification is typically made by the type of loading used: dynamic tests [7, 8] versus
static tests [9]. Another categorization separates parametric approaches [10] from non-
parametric approaches [11, 12]. In parametric schemes, models are grounded in structural
mechanics, while non-parametric strategies assign parameters numerically, via
optimization, without attaching them to physical quantities. The most common formulation
used in parametric SSI is the Stiffness Matrix Method (SMM) [13-16]. A detailed overview
of such approaches is compiled in [17].
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Although shear deformation can be critical for certain structural elements, many SSI
procedures neglect it. In slender members, shear deflection is typically minor compared to
bending, making its omission tolerable. However, for short or deep beams, the influence
of shear is substantial, and ignoring it produces what is known as a modeling error.
Neglecting this phenomenon leads to inaccurate predictions of system properties.
Conventional SSI procedures based on the SMM often rely on elementary beam theory,
which disregards shear, thereby underestimating deflections and overestimating natural
frequencies [18]. The first attempt to incorporate shear deformation in beam theory is
attributed to Timoshenko (1921) [19], whose theory accommodates both bending and
shear, though at the expense of mathematical complexity. Because of that complexity,
many SSI formulations still rely on the simpler Euler—Bernoulli framework, which ignores
shear. Nevertheless, various researchers have attempted to introduce shear considerations
into SMM [20, 21].

Recent work extends these ideas. Soto et al. (2017) [22] introduced a shear-inclusive SMM
model for fixed-end I-sections. Shear behavior in sandwich plates was explored by Li, J.
et al. (2014) [15]. Composite structures combining steel and concrete were studied by
Kawano, A. et al. (2019) [23] and Chao, S. et al. (2019) [24]. Tomas et al. (2018) [25]
advanced the Observability Method (OM) by incorporating shear deformation into the
SMM framework. This was a novel step, as it allowed shear-related equations to be
expressed parametrically within OM for the first time. However, the trade-off is that OM
requires both vertical displacements and rotational data to retrieve stiffness properties. OM
itself is an SSI approach derived from SMM principles, using static deformation
measurements to infer structural stiffness. It has proven effective for multiple structural
configurations, trusses, beams, frames, and cable-stayed bridges [26-28].

The most detailed attempt to assess shear effects within OM remains the study by Tomas
etal. (2018) [25]. Their results revealed that when only vertical deflections from static tests
are considered, stiffness properties cannot be correctly identified due to the mathematical
form of the governing equations. To achieve accurate results, OM also requires rotational
measurements, something rarely captured in practice since infrastructure monitoring
usually depends on vertical displacement data, obtained, for example, from surveying,
while rotation sensors such as clinometers are used infrequently [29]. Moreover,
displacement-based data are typically more robust than rotational measurements, and
international standards prioritize vertical deflections as reference. This limitation
highlights a critical gap in OM methodology.

Addressing this gap is crucial, as reliable structural assessment methods must balance
theoretical completeness with practical feasibility. While OM represents a promising
framework, its dependence on rotation data makes it less applicable in real-world
monitoring scenarios. Therefore, further research is needed to adapt or extend OM so that
meaningful stiffness properties can be derived using only displacement-based information,
particularly vertical deflections, which remain the most accessible and standardized
measurements. The present study contributes to this effort by examining the role of shear
deformation in OM, analyzing its limitations when applied exclusively with vertical
deflections, and exploring potential pathways for enhancing the method’s applicability in
structural health monitoring.

The objective of this study is therefore to clarify why OM cannot reliably determine
structural properties when restricted to vertical deflection measurements. To address this,
parametric numerical analyses are performed on progressively complex examples. The
paper is structured as follows: Section 2 outlines OM with shear considerations; Section 3
applies the approach to a simply supported beam and a cantilever, showing the limitations
reported by Tomas et al. (2018) [25]; Section 4 discusses in detail why OM fails under
vertical-deflection-only measurements; and Section 5 summarizes the key conclusions
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2. Observability Method

From the direct stiffness formulation of a two-dimensional beam element subjected to in-
plane loading, the equilibrium at the element nodes can be expressed in matrix form as:

[K]- {3} ={f} (1)

where the displacement vector {6} is composed of translational degrees of freedom in the
horizontal and vertical directions, along with the nodal rotations. The external load vector
{f} includes the corresponding horizontal forces, vertical forces, and applied nodal
moments. The global stiffness matrix [K] is assembled from the contributions of the
individual beam elements, and its entries reflect the axial stiffness (EA), bending stiffness
(EI), and the element length (L), where E is the Young’s modulus, I is the second moment
of area, and A is the cross-sectional area.

In 1968, Przemieniecki [2] was the first to extend the classical beam stiffness matrix by
explicitly accounting for shear flexibility. His formulation introduced a correction factor,
denoted as ¢ (the shear parameter), which modifies certain terms of the matrix. The
parameter is expressed as:

12E1

T GA L2 @

Here, Av represents the effective shear area, while G is the shear modulus. The coefficient
v corresponds to Poisson’s ratio, as indicated in Eq. (3). A detailed inspection of
Przemieniecki’s formulation reveals that the shear parameter ¢ appears in the denominator
of many stiffness matrix entries, which complicates its use. To address this limitation,
Tomas et al. introduced a reformulation by defining a new variable, denoted as the OM
shear parameter Q. This parameter provides an alternative representation of shear
flexibility and is given by (Eq. 4):

E ?

G=2(1+v)' Q=1+<z) 3),4)

Once the original shear parameter ¢ is substituted with the OM shear parameter Q, the
modified stiffness formulation can be expressed in terms of Q. The resulting element
stiffness matrix for a two-dimensional beam element, incorporating shear flexibility, is

written as:
- EA 0 o EA o o
T a
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When a static load test is carried out, the geometry, boundary conditions, and nodal forces
are specified. The unknown structural parameters in the stiffness matrix method (SMM)
can then be identified by recording a selected set of displacements. This requires solving
an inverse problem. For this purpose, the measured data are grouped into subsets: 61 and
f(1), which are the known parts of the global displacement vector {3} and force vector {f},
respectively. The remaining components, denoted as 60 from {6} and f(0) from {f}, are
treated as unknowns. With this partitioning, Eq. (1) can be reformulated as:
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To isolate the unknowns on the left-hand side while retaining the measured (6)
quantities on the right-hand side, Eq. (6) can be reorganized as:

Kio 0 ] {58} {fl - K1*18;}
Bl-1z} =1, . = « v (=1D}, 7
Bl = AP = s = o ™)

In this context, 0 and I represent the zero and identity matrices, respectively. To verify
whether the system admits a solution, it is necessary to compute the null space [V] of the
coefficient matrix [B]. The condition for compatibility requires that the product [V]T{D}
vanishes. When this condition is met, the system can be solved; if not, no solution exists.
According to Castillo et al. (2000, 2002) [26, 27], the full set of system solutions (7) follows
a general structure that combines a particular solution with contributions from the null
space.

{Zy={Z,} + [V]-{p}, (8)

In the formulation, {Zp} represents a particular solution of system (8), while the term
[VI{p} encompasses the complete set of solutions to the corresponding homogeneous
system. Here, [V] provides a basis for the linear space of solutions, and the elements of {p}
are arbitrary real numbers that define all possible linear combinations of this basis. A
variable can have a unique solution not only when the null space of [V] is empty, but also
when the corresponding row of [V] consists entirely of zeros. Therefore, by examining [V]
and identifying its null rows, one can determine which variables in {Z} are uniquely
defined. Interestingly, if none of the variables in {Z} are fixed by null space, any
deflections, forces, or other parameters obtained from the initial OM analysis can be fed
back recursively to extract additional parameters. Further details on this iterative procedure
are discussed in [5, 19].

The literature indicates that vertical displacement measurements generally provide more
reliable data than rotations, and international standards predominantly focus on vertical
deformations. This makes it important to critically evaluate the OM, particularly to
understand the limitations of measurement sets. Specifically, the OM formulation that
includes shear deformation [25] fails to identify any parameters if only wvertical
displacements are measured. In other words, capturing rotations is essential for the
observation of any material property through OM. The following section presents an
illustrative example highlighting the inability of OM to determine material parameters
using solely vertical deflection data.

3. Analyzing the General Solution

In this section, the null space is examined across a series of increasingly complex examples,
focusing on cases where measurement sets contain only vertical displacements. The
analysis demonstrates that when shear deformation is considered, OM cannot detect any
material properties if only vertical deflections are available.

3.1 Example 1: simply supported beam with vertical deflections

Emadi et al. (2019) [30] evaluated the null space of a simply supported beam 0.6 m in
length, discretized into 7 nodes and 6 Timoshenko beam elements (Figure 1). The beam
has a uniform cross-section, and all elements share identical properties: Young’s modulus,
Poisson’s ratio, shear area, cross-sectional area, and moment of inertia.

Table 1 summarizes the mechanical and geometric properties adopted for the finite element
model of the simply supported beam. The cross-sectional area of the beam is set to 0.1 m?,
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while the effective shear area is slightly smaller, 0.0833 m?, reflecting the reduction
commonly introduced to account for non-uniform shear distribution. The second moment
of inertia, which governs bending stiffness, is 0.0083 m*. Material properties are
characterized by a Young’s modulus of 27 GPa, representative of typical construction
materials such as lightweight concrete or stone, and a Poisson’s ratio of 0.25, which
indicates moderate lateral contraction under axial loading. These parameters together
define the stiffness characteristics of the model and serve as the input for the subsequent
structural system identification analysis.

Boundary conditions restrict both horizontal and vertical displacements at node 1
(ul=v1=0, ul = vl = 0) and vertical displacement at node 7 (v7=0). The only external load
in this numerical test is a concentrated vertical force of 100 kN applied at node 3
(V3=100kN). Vertical deflections were computed using Midas/Civil, and measurement
errors are neglected in this analysis

|>‘-4

1
0Am_  0Am, 0Oim,_ 0im_ 0im_  0.1m_

Figure 3. Example 1. FEM for a simply supported beam.

Table 1: Properties of the FEM of the simply supported beam.

Area [m?] 0.1
Shear Area [m?] 0.0833
Inertia [m*] 0.0083
Young’s Modulus [GPa] 27
Poisson’s Ratio y 0.25

For the inverse analysis of this structure, the vertical load V3, element lengths, Young’s
modulus, and Poisson’s ratio are treated as known quantities, whereas the moment of
inertia I and the shear area Av are considered unknown. Because no horizontal loads are
applied in this example, the axial stiffness contributions are not engaged, allowing the
corresponding terms in the SMM equations to be omitted. With only III and Av as
unknowns in this case, at least two independent deformation measurements would
theoretically be required to identify these parameters. However, it is found that no
combination of vertical deflections alone is sufficient to accurately recover the unknown.

To demonstrate this limitation, the analysis uses a measurement set consisting of all five
vertical deflections available in the beam (from nodes 2 through 6). After applying the
variable transformation, the vector of unknowns {Z}, as defined in Eq. (8), includes not
only the target parameters I and the OM shear parameter Q, but also additional coupled
unknowns, denoted as Iwj and Qw, along with the boundary reactions (H1, V1, V7). The
complete solution of this system can then be expressed as:
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As discussed in the previous section (Eq. 8), a variable has a unique solution when the
corresponding row in the null space matrix [V] is entirely zero. In this example, the three
rows associated with the boundary reactions (H1, H7, and V7) are null, meaning these
variables are uniquely determined by the particular solution. In the subsequent recursive
step, the parameters that have been identified are fed back into the OM-based SSI
procedure. Despite this update to the system of equations, no additional variables can be
resolved, and the recursion terminates without yielding further information. Notably, the
only parameters successfully observed in this process are the reactions of an isostatic
structure, which can be determined directly from equilibrium conditions. This example
clearly illustrates that OM is incapable of identifying material or structural parameters
when rotations are excluded from the measurement set.

3.2 Example 2: cantilever beam with vertical deflections

Next, a cantilever beam is considered, featuring the same cross-sectional geometry and
material characteristics as the simply supported beam previously analyzed.

The cross-section has a total area of 0.1 m?, which defines the primary load-bearing surface
of the element, while the effective shear area is slightly smaller, at 0.0833 m?, to account
for the non-uniform distribution of shear stresses across the section. The flexural rigidity
of the beam is represented by its second moment of inertia, equal to 0.0083 m*, which plays
a central role in governing its resistance to bending deformations under external loading.
From the material perspective, the elastic response is defined by a Young’s modulus of 27
GPa, indicating a relatively stiff behavior typical of lightweight structural materials,
whereas the lateral contraction under axial strain is captured by a Poisson’s ratio of 0.25, a
value consistent with isotropic solids such as aluminum alloys.

By adopting these same geometrical and mechanical parameters for the cantilever case, the
comparison with the simply supported configuration remains consistent, enabling a direct
evaluation of how boundary conditions, rather than intrinsic material or sectional
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variations, influence the performance of the observability method when shear effects are
taken into account. This structure is discretized into six beam elements and seven nodes,
as illustrated in Figure 2.

2 3 K 5 6 7

0im, 0im, 0im_, 0im_ O0.1im_ 0.1m_

Figure 5. Example 2. FEM for a cantilever beam.

The cantilever beam is constrained at node 1, where all horizontal and vertical
displacements, as well as rotational deflections due to bending, are fixed (ul=v1l=w1=0).
A single concentrated vertical load of 100 kN is applied at the free end, node 7
(V7=100 kN), and the resulting vertical deflections are computed using Midas/Civil.

For the inverse analysis, the applied load V7, element lengths, Young’s modulus, and
Poisson’s ratio are considered known, while the moment of inertia I and the shear area Av
are treated as unknowns. Because there are no horizontal forces, axial stiffness effects are
inactive, and the corresponding terms in the SMM equations are removed. With only I and
Av as unknowns, at least two independent deformation measures would theoretically be
required for parameter identification. However, as in Example 1, no combination of vertical
deflections alone allows for accurate determination of the unknowns.

This outcome highlights a fundamental limitation of the observability method when applied
to systems that include shear deformation. Although the cantilever configuration
introduces different boundary conditions compared to the simply supported beam, the lack
of rotational information in the measurement set once again prevents the successful
identification of both the flexural and shear parameters. The inability to decouple the
influence of the moment of inertia from the shear area using only vertical deflections
underscores the necessity of incorporating additional types of measurements, such as
rotations or mixed deformation data, to achieve a well-posed identification problem. This
reinforces the broader conclusion that vertical deflections alone, regardless of structural
configuration, are insufficient for capturing the full mechanical behavior of beams when
shear effects are non-negligible.

Even though the system of equations can formally be established in this manner, the
structure of the solution remains underdetermined when only displacement data are
included. In practice, this means that the mathematical framework allows multiple
combinations of I and Av to satisfy the same set of vertical deflections, producing
ambiguity in the identified parameters. Such indeterminacy not only diminishes the
reliability of the observability method but also highlights the importance of integrating
richer datasets into the inverse analysis. Incorporating rotations, hybrid load cases, or
alternative boundary conditions could provide the additional constraints needed to separate
bending and shear effects, thereby yielding more accurate and stable parameter estimates.

To demonstrate this limitation, the analysis uses a measurement set comprising all six
vertical deflections from nodes 2 through 7. After the variable transformation, the vector
of unknowns {Z}, as defined in Eq. (8), includes the target parameters I and Q, additional
coupled unknowns (Iwj and Qwj), and the boundary reactions (H1, V1, M1. The general
solution of this system can then be expressed as:
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As discussed previously (Eq. 8), a variable is uniquely determined when its corresponding
row in the null space matrix [V] consists entirely of zeros. In the case of this cantilever
beam, the three rows associated with the boundary reactions (H1, M1, and V1) are null,
meaning these reaction forces and moments are uniquely defined by the particular solution.
During the subsequent recursive step, these identified parameters are fed back into the OM-
based SSI procedure. However, even after updating the system of equations (Eq. 10) with
this information, no additional unknowns can be resolved, and the recursion terminates
without yielding further insight. Notably, the only parameters that can be observed are the
boundary reactions of an isostatic system, which can be directly obtained from equilibrium
considerations. This example thus confirms that OM fails to identify material or structural
parameters when rotational measurements are excluded from the dataset.

4. Analyzing the Results

As demonstrated in Egs. (9) and (10), even a large number of measurements fails to allow
the OM to identify any material or structural properties. A careful examination of the
general solution reveals that the variables in the vector {Z} are highly interdependent, as
indicated in Egs. (11) and (12). Because of this strong coupling, equations that account for
rotational effects cannot be effectively solved unless rotational measurements are included
in the dataset. This is particularly true for parameters such as I and Q, which are closely
linked to rotational degrees of freedom in the system. Mathematically, this coupling is
reflected in the fact that the corresponding null space rows are nonzero, meaning these
parameters do not have unique solutions.

This outcome highlights a broader implication for the applicability of the observability
method: increasing the number of displacement measurements alone does not resolve the
identifiability issue. In fact, the redundancy of displacement data only reinforces the same
coupling patterns among parameters, leaving the null space unaffected. As a result, the
method’s inability to isolate shear and flexural properties is not a matter of measurement
quantity but of measurement diversity. Without incorporating rotational data or alternative
observables, the system remains mathematically ill-conditioned, and parameter
identification becomes fundamentally unattainable within the OM framework.
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5. Conclusion

Most Structural System Identification (SSI) techniques neglect shear deformation, as it is
often small compared to flexural effects. However, in certain structural configurations,
shear can have a significant influence. According to the literature, the only
comprehensive study that explicitly considers shear effects in static SSI is the
Observability Method (OM). Despite this, OM is unable to identify structural parameters
when only vertical deflections are measured. To address this limitation, the present study
investigates the impact of shear deformations within the OM framework.

Two benchmark cases—a simply supported beam and a cantilever—are analyzed to
demonstrate that OM, even when accounting for shear, cannot determine any parameters
from vertical deflections alone. To elucidate this limitation, the general solution
formulation of the method is presented for both examples. The subsequent analysis of
these solutions reveals that the primary weaknesses of OM arise from the complexity of
the equation system and its inherent linearity.

Based on these findings, the study concludes that extending the Constrained
Observability Method (COM) to include shear deformation provides a potential solution.
Since COM employs a numerical optimization-based approach, it can address the issues
of variable coupling and linear system constraints, overcoming the limitations observed
in the classical OM.

In addition, the study highlights the importance of measurement strategies in SSI. While
vertical deflection is the most accessible and widely standardized parameter, it alone
cannot capture the coupling between flexural and shear behavior. Incorporating rotation
or hybrid measurement techniques could significantly enhance parameter observability,
offering more complete structural characterization. This suggests that future monitoring
programs should reconsider the exclusive reliance on vertical displacement
measurements.
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