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Traditional structural system identification techniques often rely on redundant 
measurement sets due to the linearity of their governing equations, a requirement that 
becomes problematic when data availability is limited. To mitigate these constraints, more 
adaptable identification methods have recently been introduced. However, similar to many 
existing approaches, they are typically based on the Euler–Bernoulli beam theory, which 
neglects shear deformation effects. While this assumption may be acceptable for slender 
members, it can lead to significant inaccuracies in elements such as deep beams, where 
shear contributions strongly influence mechanical properties. This study addresses this 
limitation by integrating shear deformation into a structural system identification 
framework. Through a comprehensive parametric analysis, the impact of shear deformation 
on the structural response across members with varying slenderness ratios is evaluated, 
offering improved accuracy and reliability for system identification in practical 
engineering applications. 
Keywords: Health monitoring, Structural System Identification, Observability Method, 
Shear stiffness, beams, bridges. 

                                                                                                                                                   

1. Introduction 
System Identification (SI) refers to the process of constructing models for systems whose 
internal characteristics are not fully known, and it is widely employed across different 
branches of engineering [1]. The goal is to generate mathematical representations capable 
of capturing how the system behaves. One of the earliest contributors was Friedrich Gauss, 
who devised the Gauss–Newton method for refining parameter estimates in orbital 
trajectory calculations. SI initially emerged in electronic engineering but soon spread into 
other scientific and technical disciplines [2, 3]. Within SI, Structural System Identification 
(SSI) is a specific branch that focuses on extracting structural parameters, such as bending 
and axial stiffness, through mathematical formulations [4].   

A broad spectrum of SSI techniques has been proposed in the literature [5, 6]. 
Classification is typically made by the type of loading used: dynamic tests [7, 8] versus 
static tests [9]. Another categorization separates parametric approaches [10] from non-
parametric approaches [11, 12]. In parametric schemes, models are grounded in structural 
mechanics, while non-parametric strategies assign parameters numerically, via 
optimization, without attaching them to physical quantities. The most common formulation 
used in parametric SSI is the Stiffness Matrix Method (SMM) [13-16]. A detailed overview 
of such approaches is compiled in [17].   
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Although shear deformation can be critical for certain structural elements, many SSI 
procedures neglect it. In slender members, shear deflection is typically minor compared to 
bending, making its omission tolerable. However, for short or deep beams, the influence 
of shear is substantial, and ignoring it produces what is known as a modeling error. 
Neglecting this phenomenon leads to inaccurate predictions of system properties. 
Conventional SSI procedures based on the SMM often rely on elementary beam theory, 
which disregards shear, thereby underestimating deflections and overestimating natural 
frequencies [18]. The first attempt to incorporate shear deformation in beam theory is 
attributed to Timoshenko (1921) [19], whose theory accommodates both bending and 
shear, though at the expense of mathematical complexity. Because of that complexity, 
many SSI formulations still rely on the simpler Euler–Bernoulli framework, which ignores 
shear. Nevertheless, various researchers have attempted to introduce shear considerations 
into SMM [20, 21]. 

Recent work extends these ideas. Soto et al. (2017) [22] introduced a shear-inclusive SMM 
model for fixed-end I-sections. Shear behavior in sandwich plates was explored by Li, J. 
et al. (2014) [15]. Composite structures combining steel and concrete were studied by 
Kawano, A. et al. (2019) [23] and Chao, S. et al. (2019) [24]. Tomas et al. (2018) [25] 
advanced the Observability Method (OM) by incorporating shear deformation into the 
SMM framework. This was a novel step, as it allowed shear-related equations to be 
expressed parametrically within OM for the first time. However, the trade-off is that OM 
requires both vertical displacements and rotational data to retrieve stiffness properties. OM 
itself is an SSI approach derived from SMM principles, using static deformation 
measurements to infer structural stiffness. It has proven effective for multiple structural 
configurations, trusses, beams, frames, and cable-stayed bridges [26-28]. 

The most detailed attempt to assess shear effects within OM remains the study by Tomas 
et al. (2018) [25]. Their results revealed that when only vertical deflections from static tests 
are considered, stiffness properties cannot be correctly identified due to the mathematical 
form of the governing equations. To achieve accurate results, OM also requires rotational 
measurements, something rarely captured in practice since infrastructure monitoring 
usually depends on vertical displacement data, obtained, for example, from surveying, 
while rotation sensors such as clinometers are used infrequently [29]. Moreover, 
displacement-based data are typically more robust than rotational measurements, and 
international standards prioritize vertical deflections as reference. This limitation 
highlights a critical gap in OM methodology. 

Addressing this gap is crucial, as reliable structural assessment methods must balance 
theoretical completeness with practical feasibility. While OM represents a promising 
framework, its dependence on rotation data makes it less applicable in real-world 
monitoring scenarios. Therefore, further research is needed to adapt or extend OM so that 
meaningful stiffness properties can be derived using only displacement-based information, 
particularly vertical deflections, which remain the most accessible and standardized 
measurements. The present study contributes to this effort by examining the role of shear 
deformation in OM, analyzing its limitations when applied exclusively with vertical 
deflections, and exploring potential pathways for enhancing the method’s applicability in 
structural health monitoring. 

The objective of this study is therefore to clarify why OM cannot reliably determine 
structural properties when restricted to vertical deflection measurements. To address this, 
parametric numerical analyses are performed on progressively complex examples. The 
paper is structured as follows: Section 2 outlines OM with shear considerations; Section 3 
applies the approach to a simply supported beam and a cantilever, showing the limitations 
reported by Tomas et al. (2018) [25]; Section 4 discusses in detail why OM fails under 
vertical-deflection-only measurements; and Section 5 summarizes the key conclusions  
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2. Observability Method 

From the direct stiffness formulation of a two-dimensional beam element subjected to in-
plane loading, the equilibrium at the element nodes can be expressed in matrix form as: 

[K]·{δ}={f}                 (1) 

where the displacement vector {δ} is composed of translational degrees of freedom in the 
horizontal and vertical directions, along with the nodal rotations. The external load vector 
{f} includes the corresponding horizontal forces, vertical forces, and applied nodal 
moments. The global stiffness matrix [K] is assembled from the contributions of the 
individual beam elements, and its entries reflect the axial stiffness (EA), bending stiffness 
(EI), and the element length (L), where E is the Young’s modulus, I is the second moment 
of area, and A is the cross-sectional area. 

In 1968, Przemieniecki [2] was the first to extend the classical beam stiffness matrix by 
explicitly accounting for shear flexibility. His formulation introduced a correction factor, 
denoted as ϕ (the shear parameter), which modifies certain terms of the matrix. The 
parameter is expressed as: 

∅ =
12𝐸𝐸𝐸𝐸
𝐺𝐺𝐴𝐴𝑣𝑣𝐿𝐿2

   ,         (2) 

Here, Av represents the effective shear area, while G is the shear modulus. The coefficient 
ν corresponds to Poisson’s ratio, as indicated in Eq. (3). A detailed inspection of 
Przemieniecki’s formulation reveals that the shear parameter ϕ appears in the denominator 
of many stiffness matrix entries, which complicates its use. To address this limitation, 
Tomas et al. introduced a reformulation by defining a new variable, denoted as the OM 
shear parameter Q. This parameter provides an alternative representation of shear 
flexibility and is given by (Eq. 4): 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣)  ,         𝑄𝑄 =
∅

1 + ∅
                                                          (3), (4) 

Once the original shear parameter ϕ is substituted with the OM shear parameter Q, the 
modified stiffness formulation can be expressed in terms of Q. The resulting element 
stiffness matrix for a two-dimensional beam element, incorporating shear flexibility, is 
written as: 

[𝐾𝐾] =

⎣
⎢
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⎤

                                 (5) 

When a static load test is carried out, the geometry, boundary conditions, and nodal forces 
are specified. The unknown structural parameters in the stiffness matrix method (SMM) 
can then be identified by recording a selected set of displacements. This requires solving 
an inverse problem. For this purpose, the measured data are grouped into subsets: δ1 and 
f(1), which are the known parts of the global displacement vector {δ} and force vector {f}, 
respectively. The remaining components, denoted as δ0 from {δ} and f(0) from {f}, are 
treated as unknowns. With this partitioning, Eq. (1) can be reformulated as: 
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[𝐾𝐾∗] · {δ∗} = �
𝐾𝐾00∗ 𝐾𝐾01∗
𝐾𝐾10∗ 𝐾𝐾11∗

� · �
δ0∗
δ1∗
� = �

𝑓𝑓0
𝑓𝑓1
� = {𝑓𝑓} , 

To isolate the unknowns on the left-hand side while retaining the measured 
quantities on the right-hand side, Eq. (6) can be reorganized as: 

(6) 

[𝐵𝐵] · {𝑧𝑧} = �
𝐾𝐾10∗ 0
𝐾𝐾00∗ −𝐼𝐼� · �δ0

∗

𝑓𝑓0
� = �

𝑓𝑓1 − 𝐾𝐾11∗ δ1∗
−𝐾𝐾01∗ δ1∗

� = {𝐷𝐷},                                             (7) 

In this context, 0 and I represent the zero and identity matrices, respectively. To verify 
whether the system admits a solution, it is necessary to compute the null space [V] of the 
coefficient matrix [B]. The condition for compatibility requires that the product [V]T{D} 
vanishes. When this condition is met, the system can be solved; if not, no solution exists. 
According to Castillo et al. (2000, 2002) [26, 27], the full set of system solutions (7) follows 
a general structure that combines a particular solution with contributions from the null 
space. 

{𝑍𝑍} = �𝑍𝑍p� + [𝑉𝑉] · {𝜌𝜌} ,    (8) 
In the formulation, {Zp} represents a particular solution of system (8), while the term 
[V]{ρ} encompasses the complete set of solutions to the corresponding homogeneous 
system. Here, [V] provides a basis for the linear space of solutions, and the elements of {ρ} 
are arbitrary real numbers that define all possible linear combinations of this basis. A 
variable can have a unique solution not only when the null space of [V] is empty, but also 
when the corresponding row of [V] consists entirely of zeros. Therefore, by examining [V] 
and identifying its null rows, one can determine which variables in {Z} are uniquely 
defined. Interestingly, if none of the variables in {Z} are fixed by null space, any 
deflections, forces, or other parameters obtained from the initial OM analysis can be fed 
back recursively to extract additional parameters. Further details on this iterative procedure 
are discussed in [5, 19]. 

The literature indicates that vertical displacement measurements generally provide more 
reliable data than rotations, and international standards predominantly focus on vertical 
deformations. This makes it important to critically evaluate the OM, particularly to 
understand the limitations of measurement sets. Specifically, the OM formulation that 
includes shear deformation [25] fails to identify any parameters if only vertical 
displacements are measured. In other words, capturing rotations is essential for the 
observation of any material property through OM. The following section presents an 
illustrative example highlighting the inability of OM to determine material parameters 
using solely vertical deflection data. 

3. Analyzing the General Solution 

In this section, the null space is examined across a series of increasingly complex examples, 
focusing on cases where measurement sets contain only vertical displacements. The 
analysis demonstrates that when shear deformation is considered, OM cannot detect any 
material properties if only vertical deflections are available. 

3.1 Example 1: simply supported beam with vertical deflections 

Emadi et al. (2019) [30] evaluated the null space of a simply supported beam 0.6 m in 
length, discretized into 7 nodes and 6 Timoshenko beam elements (Figure 1). The beam 
has a uniform cross-section, and all elements share identical properties: Young’s modulus, 
Poisson’s ratio, shear area, cross-sectional area, and moment of inertia.  

Table 1 summarizes the mechanical and geometric properties adopted for the finite element 
model of the simply supported beam. The cross-sectional area of the beam is set to 0.1 m², 
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while the effective shear area is slightly smaller, 0.0833 m², reflecting the reduction 
commonly introduced to account for non-uniform shear distribution. The second moment 
of inertia, which governs bending stiffness, is 0.0083 m⁴. Material properties are 
characterized by a Young’s modulus of 27 GPa, representative of typical construction 
materials such as lightweight concrete or stone, and a Poisson’s ratio of 0.25, which 
indicates moderate lateral contraction under axial loading. These parameters together 
define the stiffness characteristics of the model and serve as the input for the subsequent 
structural system identification analysis. 

Boundary conditions restrict both horizontal and vertical displacements at node 1 
(u1=v1=0, u1 = v1 = 0) and vertical displacement at node 7 (v7=0). The only external load 
in this numerical test is a concentrated vertical force of 100 kN applied at node 3 
(V3=100 kN). Vertical deflections were computed using Midas/Civil, and measurement 
errors are neglected in this analysis 

 
Figure 3. Example 1. FEM for a simply supported beam. 

Table 1: Properties of the FEM of the simply supported beam. 

Area [m2] 0.1 
Shear Area [m2] 0.0833 
Inertia [m4] 0.0083 
Young’s Modulus [GPa] 27 
Poisson’s Ratio γ 0.25 

  

For the inverse analysis of this structure, the vertical load V3, element lengths, Young’s 
modulus, and Poisson’s ratio are treated as known quantities, whereas the moment of 
inertia I and the shear area Av are considered unknown. Because no horizontal loads are 
applied in this example, the axial stiffness contributions are not engaged, allowing the 
corresponding terms in the SMM equations to be omitted. With only III and Av as 
unknowns in this case, at least two independent deformation measurements would 
theoretically be required to identify these parameters. However, it is found that no 
combination of vertical deflections alone is sufficient to accurately recover the unknown. 

To demonstrate this limitation, the analysis uses a measurement set consisting of all five 
vertical deflections available in the beam (from nodes 2 through 6). After applying the 
variable transformation, the vector of unknowns {Z}, as defined in Eq. (8), includes not 
only the target parameters I and the OM shear parameter Q, but also additional coupled 
unknowns, denoted as Iwj and Qw, along with the boundary reactions (H1, V1, V7). The 
complete solution of this system can then be expressed as: 
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�        (9) 

As discussed in the previous section (Eq. 8), a variable has a unique solution when the 
corresponding row in the null space matrix [V] is entirely zero. In this example, the three 
rows associated with the boundary reactions (H1, H7, and V7) are null, meaning these 
variables are uniquely determined by the particular solution. In the subsequent recursive 
step, the parameters that have been identified are fed back into the OM-based SSI 
procedure. Despite this update to the system of equations, no additional variables can be 
resolved, and the recursion terminates without yielding further information. Notably, the 
only parameters successfully observed in this process are the reactions of an isostatic 
structure, which can be determined directly from equilibrium conditions. This example 
clearly illustrates that OM is incapable of identifying material or structural parameters 
when rotations are excluded from the measurement set.  

3.2 Example 2: cantilever beam with vertical deflections 

Next, a cantilever beam is considered, featuring the same cross-sectional geometry and 
material characteristics as the simply supported beam previously analyzed. 

The cross-section has a total area of 0.1 m², which defines the primary load-bearing surface 
of the element, while the effective shear area is slightly smaller, at 0.0833 m², to account 
for the non-uniform distribution of shear stresses across the section. The flexural rigidity 
of the beam is represented by its second moment of inertia, equal to 0.0083 m⁴, which plays 
a central role in governing its resistance to bending deformations under external loading. 
From the material perspective, the elastic response is defined by a Young’s modulus of 27 
GPa, indicating a relatively stiff behavior typical of lightweight structural materials, 
whereas the lateral contraction under axial strain is captured by a Poisson’s ratio of 0.25, a 
value consistent with isotropic solids such as aluminum alloys. 

By adopting these same geometrical and mechanical parameters for the cantilever case, the 
comparison with the simply supported configuration remains consistent, enabling a direct 
evaluation of how boundary conditions, rather than intrinsic material or sectional 
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variations, influence the performance of the observability method when shear effects are 
taken into account. This structure is discretized into six beam elements and seven nodes, 
as illustrated in Figure 2. 

 

Figure 5. Example 2.  FEM for a cantilever beam. 

The cantilever beam is constrained at node 1, where all horizontal and vertical 
displacements, as well as rotational deflections due to bending, are fixed (u1=v1=w1=0). 
A single concentrated vertical load of 100 kN is applied at the free end, node 7 
(V7=100 kN), and the resulting vertical deflections are computed using Midas/Civil. 

For the inverse analysis, the applied load V7, element lengths, Young’s modulus, and 
Poisson’s ratio are considered known, while the moment of inertia I and the shear area Av 
are treated as unknowns. Because there are no horizontal forces, axial stiffness effects are 
inactive, and the corresponding terms in the SMM equations are removed. With only I and 
Av as unknowns, at least two independent deformation measures would theoretically be 
required for parameter identification. However, as in Example 1, no combination of vertical 
deflections alone allows for accurate determination of the unknowns. 

This outcome highlights a fundamental limitation of the observability method when applied 
to systems that include shear deformation. Although the cantilever configuration 
introduces different boundary conditions compared to the simply supported beam, the lack 
of rotational information in the measurement set once again prevents the successful 
identification of both the flexural and shear parameters. The inability to decouple the 
influence of the moment of inertia from the shear area using only vertical deflections 
underscores the necessity of incorporating additional types of measurements, such as 
rotations or mixed deformation data, to achieve a well-posed identification problem. This 
reinforces the broader conclusion that vertical deflections alone, regardless of structural 
configuration, are insufficient for capturing the full mechanical behavior of beams when 
shear effects are non-negligible. 

Even though the system of equations can formally be established in this manner, the 
structure of the solution remains underdetermined when only displacement data are 
included. In practice, this means that the mathematical framework allows multiple 
combinations of I and 𝐴𝐴𝐴𝐴 to satisfy the same set of vertical deflections, producing 
ambiguity in the identified parameters. Such indeterminacy not only diminishes the 
reliability of the observability method but also highlights the importance of integrating 
richer datasets into the inverse analysis. Incorporating rotations, hybrid load cases, or 
alternative boundary conditions could provide the additional constraints needed to separate 
bending and shear effects, thereby yielding more accurate and stable parameter estimates. 

To demonstrate this limitation, the analysis uses a measurement set comprising all six 
vertical deflections from nodes 2 through 7. After the variable transformation, the vector 
of unknowns {Z}, as defined in Eq. (8), includes the target parameters I and Q, additional 
coupled unknowns (Iwj and Qwj), and the boundary reactions (H1, V1, M1. The general 
solution of this system can then be expressed as: 
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As discussed previously (Eq. 8), a variable is uniquely determined when its corresponding 
row in the null space matrix [V] consists entirely of zeros. In the case of this cantilever 
beam, the three rows associated with the boundary reactions (H1, M1, and V1) are null, 
meaning these reaction forces and moments are uniquely defined by the particular solution. 
During the subsequent recursive step, these identified parameters are fed back into the OM-
based SSI procedure. However, even after updating the system of equations (Eq. 10) with 
this information, no additional unknowns can be resolved, and the recursion terminates 
without yielding further insight. Notably, the only parameters that can be observed are the 
boundary reactions of an isostatic system, which can be directly obtained from equilibrium 
considerations. This example thus confirms that OM fails to identify material or structural 
parameters when rotational measurements are excluded from the dataset. 

4. Analyzing the Results 

As demonstrated in Eqs. (9) and (10), even a large number of measurements fails to allow 
the OM to identify any material or structural properties. A careful examination of the 
general solution reveals that the variables in the vector {Z} are highly interdependent, as 
indicated in Eqs. (11) and (12). Because of this strong coupling, equations that account for 
rotational effects cannot be effectively solved unless rotational measurements are included 
in the dataset. This is particularly true for parameters such as I and Q, which are closely 
linked to rotational degrees of freedom in the system. Mathematically, this coupling is 
reflected in the fact that the corresponding null space rows are nonzero, meaning these 
parameters do not have unique solutions. 

This outcome highlights a broader implication for the applicability of the observability 
method: increasing the number of displacement measurements alone does not resolve the 
identifiability issue. In fact, the redundancy of displacement data only reinforces the same 
coupling patterns among parameters, leaving the null space unaffected. As a result, the 
method’s inability to isolate shear and flexural properties is not a matter of measurement 
quantity but of measurement diversity. Without incorporating rotational data or alternative 
observables, the system remains mathematically ill-conditioned, and parameter 
identification becomes fundamentally unattainable within the OM framework. 



Design Dialogue Journal 2024, 01, 01                                                                                                                                                    23 
                                                                 

 

𝑍𝑍 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐼
𝐼𝐼𝑤𝑤1
𝐼𝐼𝑤𝑤2
𝐼𝐼𝑤𝑤3
𝐼𝐼𝑤𝑤4
𝐼𝐼𝑤𝑤5
𝐼𝐼𝑤𝑤6
𝐼𝐼𝑤𝑤7
𝑄𝑄
𝑄𝑄𝑤𝑤1
𝑄𝑄𝑤𝑤2
𝑄𝑄𝑤𝑤3
𝑄𝑄𝑤𝑤4
𝑄𝑄𝑤𝑤5
𝑄𝑄𝑤𝑤6
𝑄𝑄𝑤𝑤7
𝐻𝐻1
𝑉𝑉1
𝑉𝑉7 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,                  𝑍𝑍∗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐼
𝐼𝐼𝑤𝑤2
𝐼𝐼𝑤𝑤3
𝐼𝐼𝑤𝑤4
𝐼𝐼𝑤𝑤5
𝐼𝐼𝑤𝑤6
𝐼𝐼𝑤𝑤7
𝑄𝑄
𝑄𝑄𝑤𝑤2
𝑄𝑄𝑤𝑤3
𝑄𝑄𝑤𝑤4
𝑄𝑄𝑤𝑤5
𝑄𝑄𝑤𝑤6
𝑄𝑄𝑤𝑤7
𝐻𝐻1
𝑉𝑉1
𝑀𝑀1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                             
 (11), (12) 

 

5. Conclusion 

Most Structural System Identification (SSI) techniques neglect shear deformation, as it is 
often small compared to flexural effects. However, in certain structural configurations, 
shear can have a significant influence. According to the literature, the only 
comprehensive study that explicitly considers shear effects in static SSI is the 
Observability Method (OM). Despite this, OM is unable to identify structural parameters 
when only vertical deflections are measured. To address this limitation, the present study 
investigates the impact of shear deformations within the OM framework. 

Two benchmark cases—a simply supported beam and a cantilever—are analyzed to 
demonstrate that OM, even when accounting for shear, cannot determine any parameters 
from vertical deflections alone. To elucidate this limitation, the general solution 
formulation of the method is presented for both examples. The subsequent analysis of 
these solutions reveals that the primary weaknesses of OM arise from the complexity of 
the equation system and its inherent linearity. 

Based on these findings, the study concludes that extending the Constrained 
Observability Method (COM) to include shear deformation provides a potential solution. 
Since COM employs a numerical optimization-based approach, it can address the issues 
of variable coupling and linear system constraints, overcoming the limitations observed 
in the classical OM. 

In addition, the study highlights the importance of measurement strategies in SSI. While 
vertical deflection is the most accessible and widely standardized parameter, it alone 
cannot capture the coupling between flexural and shear behavior. Incorporating rotation 
or hybrid measurement techniques could significantly enhance parameter observability, 
offering more complete structural characterization. This suggests that future monitoring 
programs should reconsider the exclusive reliance on vertical displacement 
measurements. 
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